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Abstract

Artificial light plays an integral role in modern cities, signif-
icantly enhancing human productivity and the efficiency of
civilization. However, excessive illumination can lead to light
pollution, posing non-negligible threats to economic burdens,
ecosystems, and human health. Despite its critical impor-
tance, the exploration of its causes remains relatively limited
within the field of artificial intelligence, leaving an incom-
plete understanding of the factors contributing to light pollu-
tion and sustainable illumination planning distant. To address
this gap, we introduce a novel framework named Causally
Aware Generative Adversarial Networks (CAGAN). This in-
novative approach aims to uncover the fundamental drivers
of light pollution within cities and offer intelligent solu-
tions for optimal illumination resource allocation in the con-
text of sustainable urban development. We commence by
examining light pollution across 33,593 residential areas in
seven global metropolises. Our findings reveal substantial
influences on light pollution levels from various building
types, notably grasslands, commercial centers and residen-
tial buildings as significant contributors. These discovered
causal relationships are seamlessly integrated into the gen-
erative modeling framework, guiding the process of gener-
ating light pollution maps for diverse residential areas. Ex-
tensive experiments showcase CAGAN’s potential to inform
and guide the implementation of effective strategies to miti-
gate light pollution. Our code and data are publicly available
at https://github.com/zhangyuuao/Light Pollution CAGAN.

Introduction
When Thomas Edison’s electric light first illuminated a
street in New York City, it marked the dawn of a mod-
ern era intertwined with artificial illumination (Chepesiuk
2009). Since that moment, our world has become satu-
rated with artificial light, transforming environments and en-
hancing economic productivity. However, the seemingly be-
nign nature of artificial light conceals substantial adverse
effects on human health. Nocturnal exposure to artificial
light suppresses the synthesis and secretion of pineal mela-
tonin, a hormone crucial for regulating the circadian rhythm
(Falchi et al. 2011; Cao, Xu, and Yin 2023; Tähkämö, Par-
tonen, and Pesonen 2019), leading to an increased risk of
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metabolic disorders, cardiovascular issues, and heart dis-
ease (Brugger, Marktl, and Herold 1995; Falchi et al. 2011;
Cao, Xu, and Yin 2023). Considering the widely acknowl-
edged reality that urban areas serve as primary genera-
tors of artificial light, affecting both the adjacent sky and
ground (Pothukuchi 2021), coupled with the rapid accelera-
tion of urbanization leading more individuals to inhabit these
landscapes, there is a compelling need to scrutinize the intri-
cate implications of artificial light. This underscores the im-
portance of managing and curbing light pollution, present-
ing a crucial challenge for the sustainable development of
contemporary societies worldwide.

To uncover and probe the phenomenon of light pollution
within urban areas, several prior studies have delved into
this domain. Notably, some investigations utilized satellite-
based night-time light (NTL) imagery to quantify and eval-
uate the extent of light pollution (Zheng et al. 2021; Mu
et al. 2021; Cox et al. 2020; Hu and Zhang 2020). Others
employed a combination of NTL imagery and Geographic
Information System (GIS) techniques to analyze the intri-
cate interplay of light pollution (Butt 2012; Chalkias et al.
2006). Moreover, the distribution of Points of Interest (POIs)
in urban settings significantly shapes the occurrence of light
pollution. As a valuable data source in urban computing,
POIs play a crucial role in tasks such as discovering new
venues (Zhou, Mascolo, and Zhao 2019), predicting chronic
disease rates (Wang et al. 2018), allocating resources (Zhou
et al. 2018), and evaluating investments’ impact on socio-
economic indicators (Zhou et al. 2017). Of particular note,
a recent study used NTL imagery and POI data to compre-
hensively assess citywide light pollution (Zhao et al. 2021).

However, existing studies on light pollution exhibit spe-
cific limitations. The majority of research tends to super-
ficially quantify light pollution levels in urban areas, of-
ten neglecting the underlying causes. Consequently, practi-
cal insights for effective real-world policy development are
scarce. Additionally, these investigations commonly con-
centrate on entire cities, overlooking nuanced analyses at
smaller spatial scales or specific land use functions (Butt
2012; Chalkias et al. 2006; Zhao et al. 2021). Furthermore,
the evaluation metrics employed in these studies are fre-
quently uniform and rudimentary, disregarding the complex-
ities of localized circumstances. For instance, equating illu-
mination levels across different areas with the degree of light



pollution is illogical, as certain regions may legitimately re-
quire higher luminance without causing significant impacts.
In summary, the current literature lacks a comprehensive
framework that holistically addresses urban light pollution,
spanning detection, assessment, and suggestion formulation,
while considering solid causal relationships at finely-grained
spatial and functional scales.

To bridge this gap, we introduce a novel framework,
Causally Aware Generative Adversarial Networks (CA-
GAN), meticulously crafted to unveil causal relationships
between urban areas and light pollution. These relationships
subsequently steer the process of generating light pollution
maps across diverse residential regions. To provide a com-
prehensive and objective assessment of light pollution lev-
els, we incorporate three indices: over illumination (Mishra
2018), light trespass (Schreuder 1986), and light clutter
(Rajkhowa 2014). By holistically considering these indices,
we effectively gauge the intricate impact of light pollu-
tion on residential areas. Furthermore, our methodology
includes a thorough exploration employing causal infer-
ence techniques, which unveil significant effects of differ-
ent building types on light pollution levels. These identified
causal relationships are seamlessly integrated into CAGAN,
thereby enhancing the precision of generated light pollution
maps in urban areas. We assess light pollution across seven
globally significant metropolises, renowned for their robust
economies and international importance. Rigorous experi-
ments underscore CAGAN’s capacity to provide valuable
insights and aid in the development and implementation of
strategies to mitigate the adverse impacts of light pollution.

Our main contributions are summarized as follows:

• We propose an evaluation framework for light pollution
that enables comprehensive and objective assessment of
light pollution extent in various urban residential areas.

• We investigate the underlying factors contributing to
light pollution across metropolises, unveiling causal rela-
tionships through advanced causal inference techniques.

• We utilize the identified causal relationships related to
light pollution as conditional information to guide the
process of generating light pollution maps, which em-
powers local administrators to make informed decisions
and allocate lighting resources effectively.

Related Work
In this section, we explore three categories of studies closely
related to our topic and methodology. These include re-
search on light pollution assessment, applications of causal
inference, and the use of Generative Adversarial Networks
(GANs) in the urban computing domain.

Light Pollution Assessment. The utilization of nighttime
light images to evaluate light pollution levels has garnered
considerable attention in research. Notably, Zhao et al.
(2021) enhanced urban-scale modeling and analysis by inte-
grating POI data into their methodology. Additionally, Tong
et al.(2022) and Burt et al.(2023) introduced distinctive in-
dices for assessing light pollution. The ALAN Lab at the
University of Hong Kong has conducted extensive academic

investigations into local urban light pollution (HKU ALAN
team 2023). In contrast, our research zeroes in on the im-
pact of light pollution on residents in the residential areas
of metropolises. We conduct a comprehensive assessment
of light pollution levels in these areas, leveraging nighttime
light images and POI data.

Causal Inference in Urban Computing. The exploration
of causal relationships within the realm of social science is
crucial, and various methodologies in causal inference have
yielded substantial insights in urban computing and analy-
sis (Baum-Snow and Ferreira 2015). Overcoming confound-
ing factors lies at the heart of causal inference, particularly
in scenarios with high-dimensional confounders. To address
this challenge, Propensity and Propensity Score Matching
were introduced by ROSENBAUM and RUBIN (1983). Ad-
ditionally, Morgan and Winship (2015) proposed the Inverse
of Propensity Weighting as an effective solution to con-
founder interference. The application of the causal inference
framework by Zhang et al. (2022b) in individual healthy
lifestyle and mobility-related health policymaking further
underscores its efficacy. In this study, we employ the Debi-
ased Machine Learning method, as proposed by Chetverikov
et al. (2016). This method focuses on diminishing the influ-
ence of confounding variables, integrating machine learning
models, and providing confidence intervals to enhance sta-
bility and effectiveness.

Application of GANs in Urban Computing. Researchers
have harnessed the potential of GANs to create diverse urban
environments at various scales. CityGAN, for instance, fo-
cuses on synthesizing architectural features and building im-
ages (Bachl and Ferreira 2020). SG-GAN, introduced by Li
et al. (2018), enhances semantic segmentation on Cityscapes
using virtual data. Domain-adaptive networks based on Cy-
cleGAN, proposed by Guo et al. (2020), generate urban
scenes from virtual video games to aid in segmentation. In
a different way, Andrade and Fernandes (2022) employed
conditional GANs to synthesize satellite-like urban images
from historical maps. The work of Albert et al. (2018)
delves into simulating hyper-realistic urban patterns through
GANs. Zhang et al. (2022a) developed MetroGAN to uti-
lize NTL images, water area data, and built-up area data
to simulate urban morphology. However, our endeavor tran-
scends the task of generating urban visuals or conducting
style transfers for urban scenes. We leverage the capabilities
of conditional variational auto-encoders to embed the con-
textual and semantic intricacies associated with light pollu-
tion into the generated maps. This infusion of information
grants the maps interpretability, elucidating the implications
of light pollution’s effects.

Preliminaries
In this section, we outline methodologies for data collection,
processing, index calculation, and constructing an evalua-
tion system for residential light pollution.

Data Collection and Processing
Before initiating our study, we first selected seven global
metropolises that stand out for their scale of urbanization



and extent of economic development. These metropolises
include New York, Los Angeles, Paris, London, Shanghai,
Beijing, and Guangzhou. We established latitude and longi-
tude boundaries for each metropolis and employed Open-
StreetMap1’s API to retrieve POI data spanning various
land use types. Subsequently, we sampled the correspond-
ing nighttime light intensity value from the remote sensing
image of night-time light (Chen et al. 2020) using the lon-
gitude and latitude coordinates of each POI. Taking into ac-
count the quantity of each land use type and the distribu-
tion of night-time light intensity values, we distilled a total
of nine distinct POI categories in this study. These encom-
pass brownfield, commercial, construction, farmland, forest,
grass, industrial, residential, and retail.

Light Pollution Evaluation
Following the sampling process, we characterize a residen-
tial area within the metropolis as a square region centered
around the ”residential” land use type POI. This designated
residential area is intended to encompass a diverse range of
buildings that cater to a variety of residents’ needs, with each
occupying an approximate area of four square kilometers.
Subsequently, we identify the POI situated within this res-
idential zone and partition them into distinct plots, as de-
picted in Figure 1.

POI Selection  
and Segmentation 

POI Selection
Segmentation

Figure 1: The segmentation of POI in a residential area.

In assessing the impact of light pollution sources near
residential areas, we drew inspiration from prior research
that employed radial basis functions to gauge the extent of
light pollution influence (Zhao et al. 2021). This influence is
quantified using the following formula:

Iij = NTLj ×
1√
2πD

× exp

(
−

di2j
2D2

)
(1)

where Iij represents the level of light pollution impact on
residential area i’th from j’th pollution source, NTLj repre-
sents the night-time light intensity of j’th pollution source,
dij represents the distance between the light pollution source
and the residential area, and D is the bandwidth in the ra-
dial basis function, which is a hyperparameter with a value
of 1500m in this study.

We proceed to employ Total Nighttime Light (TNL),
Nighttime Light Disturbance (NLD), and Nighttime Light
Standard Deviation (NLSD) to quantify the three indices,

1https://openstreetmap.org

namely over illumination, light trespass, and light clutter, as
previously discussed (Burt et al. 2023; Tong et al. 2022). In
this context, let ri represent the i-th residential area, and pj
symbolize the j-th light pollution source, the corresponding
light pollution scores can be obtained through:

TNLi =
∑

pj∈C(ri)

Iij (2)

NLDi =
∑

pj∈C(ri)

Iij − Iii (3)

NLSDi =

√∑
pj∈C(ri)(I

i
j − µi

j)
2

|C(ri)|
(4)

Scorei = TNLi +NLDi +NLSDi (5)

where C(ri) represents the residential area centered on ri.
By computing these three light pollution indices, we can

assess the influence of light pollution on residential areas
from varied perspectives. Subsequently, we employ unsuper-
vised learning algorithms to categorize these areas into five
distinct levels of light pollution, discerning which residen-
tial regions are prone to enduring significant light pollution
and which areas enjoy better conditions. Armed with this in-
sight, we can offer recommendations for addressing severe
light pollution in residential zones. This guidance aids local
residents in enhancing the rational distribution of light and
managing pollution levels around nearby POIs.

We meticulously calculate light pollution indicators for
all residential areas within the seven metropolises. Subse-
quently, we choose a suitable number of centroids and apply
the k-means clustering algorithm to divide light pollution
levels into four distinct categories. The classification of res-
idential areas in each metropolis, based on their pollution
levels, is illustrated in Figure 2. Additionally, the light pol-
lution scores for each city are displayed on the right side
of the figure, facilitating a visual comparison of residential
light pollution at the urban scale.
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Figure 2: The results of light pollution assessment in all res-
idential areas across the seven metropolises.

Methodology
In this section, we introduce the Causally Aware Genera-
tive Adversarial Networks (CAGAN) framework for gen-
erating fine-grained light pollution maps in urban environ-
ments while considering causal relationships. The frame-
work is divided into two main phases: 1) estimating the
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Figure 3: The comprehensive architecture of the proposed CAGAN, containing two training stages.

causal effects of light pollution through debiased machine
learning, and 2) producing coherent light pollution maps by
integrating the obtained conditional causal information into
a novel GAN framework. Next, we delve into a comprehen-
sive explanation of the techniques employed in each phase.

Causal Inference
Causal inference is a scientific method crucial for identify-
ing causal relationships among events or variables. It allows
us to determine if one event truly causes another, moving be-
yond simple correlations or coincidences, by examining pat-
terns and connections in observed phenomena. In our study,
applying causal inference helps us investigate the complex
links between residential light pollution and various POIs in
a specific area, uncovering fundamental causal mechanisms.
Through this approach, we make significant contributions to
improving and managing light pollution.

We incorporate the causal inference within the latent out-
come framework, employing a two-stage Debiased Machine
Learning (DML) approach as the cornerstone of our re-
search methodology. DML can be used to estimate treat-
ment effects, particularly in scenarios where all potential
confounding variables that exert a direct influence on both
the treatment decision and observed outcome are accessi-
ble (Chetverikov et al. 2016). To elaborate, let Y denote
the outcome variable encompassing three light pollution in-
dices for each residential area. For each instance, we metic-
ulously designate a specific category of POIs and calculate
its quantity, average nighttime light intensity, and mean dis-
tance from the center of the residential area, all of which
are classified as intervention variables labeled as T . Addi-

tionally, we account for other variables connected to POIs,
denoted as X , which serve as potential confounders.

The DML simplifies the challenge by initially focusing on
estimating two predictive tasks (see Figure 4):

1. Predicting the outcome Y from the confounders X

Ŷ = f(X) + ϵ, E(ϵ|X) = 0 (6)

2. Predicting the treatment T from the confounders X

T̂ = g(X) + η, E(η|X) = 0 (7)

Furthermore, it holds that E(ϵ · η|X) = 0.

X
T

Y

Stage1: Learn two residuals

Unconfoundness

X

YT

Figure 4: Regression from confounders X to treatment T
and outcome Y to achieve unconfoundness.

Subsequently, we combine these two residuals using pre-
dictive models during the final stage of estimation, thereby
constructing a model for the Average Treatment Effect
(ATE), as illustrated in Figure 5. Assuming that the ultimate



goal is to estimate θ, the equation is as follows:

Ỹ = Y − f(X) (8)

T̃ = T − g(X) = η (9)

Ỹ = θ(X)T̃ + ϵ (10)

Given that E(ϵ · η|X) = 0, our objective is to estimate
θ(X) along with the optimal parameters, representing the
desired ATE:

θ∗ = argmin
θ

E[(Ỹ − θ(X)T̃ )2] (11)

Trespass

Illumination

Clutter

Stage2: Regression from residual to Outcome

NTL

Number

Distance

Figure 5: Estimation of Average Treatment Effect.

The novelty of DML resides in the orthogonal relation-
ship between the hyperplane formed by confounders and
residuals. Through the regression of the two residuals, we
effectively mitigate the confounding bias originating from
the confounders on the treatment variables. Thus, we attain
an unbiased estimation of the causal effect of the treatment.

Causally Aware Generative Adversarial Networks
The assessment of authenticity in generated images often
concerns resolution and detail. However, for city light pollu-
tion maps, this criteria emphasizing high resolution and de-
tails may not be crucial. In this context, the emphasis shifts
towards generating distinct blocks with clear boundaries.

The proposed Causally Aware Generative Adversarial
Networks (CAGAN) comprises two distinct training stages,
as illustrated in Figure 3. In the initial stage, a light pol-
lution image classifier is trained with actual light pollution
images, enabling it to establish accurate associations with
given residential area light pollution maps. Subsequently,
a conditional variational autoencoder is trained exclusively
using the base map without colorization. The generator is
then guided by the classifier and discriminator to progres-
sively generate authentic light pollution maps. Upon com-
pletion of both stages, the model is equipped to generate ac-
curate light pollution maps for residential areas based on the
relevant conditional information.

Specifically, our variational inference module employs
the ELBO (Evidence Lower Bound) loss function, which in-
corporates reconstruction error based on L1 norm and KL
divergence error. The reconstruction error measures the dis-
crepancy between generated images and the original input
images. The KL divergence error is used to assess the differ-
ence between the generated latent variable distribution and

the prior latent variable distribution. By minimizing the di-
vergence between the generated images and the prior distri-
bution, the generative model learns meaningful latent repre-
sentations. To be specific,

LKL =
1

2

(
µ⊤µ+ sum(exp(ϵ)− ϵ− 1)

)
(12)

LG = ∥x− x̂∥1 (13)
LELBO = λ1LG + λ2LKL (14)

where µ and ϵ are mean and covariance of the latent vector
output by encoder, and x is the original light pollution map.

Furthermore, our approach incorporates the following
loss functions: cross-entropy loss, which measures the dis-
parity between the predicted pollution level and the true la-
bels during image classification; binary cross-entropy (BCE)
loss, employed to discern the authenticity of the generated
maps; and mean squared error (MSE), assessing the differ-
ence between the extracted features fC(x) of the generated
and real maps, as outlined in CVAE-GAN (Bao et al. 2017).

LC = −
N∑
i=1

C∑
c=1

yi,c log(pi,c) (15)

LD = −
N∑
i=1

[yi log(pi) + (1− yi) log(1− pi)] (16)

LGD = ∥Ex∼PrfD(x)− Ex̂∼Px̂
fD(x̂)∥22 (17)

LG = ∥fD(x)− fD (x̂)∥22 + ∥fC(x)− fC (x̂)∥22 (18)

Here, N represents the number of training samples, C de-
notes the number of pollution levels, yi,c is the classification
label, yi denotes the label for true or fake maps, and fD and
fC represent the features extracted from the input map x.
Ultimately, the complete loss function for optimization is:

L = LELBO + λ3LC + λ4LD + λ5LGD + λ6LG (19)

Since we introduce the loss of map classification, the map
generated by the generator can capture more semantic infor-
mation about light pollution level. At the same time, com-
pared to the discriminator classification error alone, using
the mean square error between features extracted from real
and generated maps also provides more stable gradients to
optimize the generator.

Experiments
Experimental Setup
Data Processing. After addressing the outliers, we di-
vide the dataset into training, validation, and test sets in a
0.7:0.15:0.15 ratio, yielding 23,514 valid training samples.
Additionally, we set various random number seeds to gener-
ate different data subsets, and subsequently test and confirm
the effectiveness of the training.

Causal Inference Experiment Setup. We use a multi-
task elastic net in linear models to efficiently fit two resid-
uals. Additionally, we employ a low-dimensional linear re-
gression for estimating the Average Treatment Effect (ATE).
Our methodology involves the use of 3-fold cross-validation,
setting the maximum number of iterations at 2000.



CAGAN Experiment Setup. In the initial stage, a clas-
sifier is trained using ground truth light pollution maps with
pollution levels as labels. Employing a pre-trained ResNet50
as the backbone network, augmented by a fully connected
layer for regressing conditional vectors, we utilize a classi-
fication head and the conditional vector for pollution level
classification. Subsequently, in the second stage, the clas-
sifier’s parameters are kept fixed, and training proceeds for
the generator and discriminator networks. The models are
trained using the methodology-specific loss functions. For
our experiments, we set hyperparameters as follows: λ1 =
1, λ2 = 0.1, λ3 = 1, λ4 = 1, λ5 = 0.001, λ6 = 1.

Experimental Results
Identifying Contributors to Light Pollution. We con-
ducted comprehensive experiments covering all residential
areas across seven metropolises, meticulously documenting
the ATE of various building types on light pollution indices.
The outcomes are detailed in Table 1. We categorized the
nine building types into three distinct groups: urban living
areas (including residential buildings, commercial centers,
and retail spaces), urban development areas (encompassing
brownfields, construction areas, and industrial zones), and
urban landscaping (including grasslands, forests, and farm-
lands). Comparing their effects allows us to gain valuable
insights into light pollution.

It is evident that the origins of light pollution vary con-
siderably across different metropolises. Notably, grasslands,
commercial centers, and residential buildings have emerged
as noteworthy contributors to light pollution, consistently
exhibiting high ATE values across various metropolises.

Generating Light Pollution Maps. We utilize a well-
trained model to generate light pollution maps that facilitate
the identification of buildings making notable contributions
to light pollution for local residents. Furthermore, the model
excels at accurately pinpointing sources of light pollution,
thereby enabling a judicious allocation of nighttime lighting
resources. Figure 6 displays the remarkable performance of
CAGAN. The model delineates building boundaries within
residential areas and strategically leverages conditional in-
formation to guide the accurate coloring of land blocks.

Input Output Ground Truth Input Output Ground Truth

Figure 6: Light pollution maps generated by CAGAN.

The prowess of CAGAN lies in its capacity to produce
light pollution maps grounded in causal relationships that
may not correspond to reality. For instance, it can simulate
the enhancement of an area previously plagued by intense

light pollution. This ability can be attributed to two pivotal
factors: firstly, the integration of a well-trained classifier that
guides the generator’s training, infusing the generated im-
ages with both conditional information and interpretability;
secondly, the inclusion of a variational inference module that
empowers the model to grasp the underlying factors driving
light pollution, endowing it with a sense of causality. We
have manipulated light pollution levels in residential areas
and generated corresponding maps, illustrated in Figure 7.

Output
(level 3)

Output
(level 1)

Output
(level 0)

Ground
Truth

Figure 7: The improvement of severe light pollution.

Evaluation of Generated Light Pollution Maps
We employ a range of metrics to comprehensively evaluate
the quality of our generated light pollution maps, spanning
from pixel-level analysis to perceptual assessment. These
metrics encompass the Inception Score (IS), Peak Signal-to-
Noise Ratio (PSNR), Mean Absolute Error (MAE), Multi-
Scale Structural Similarity Index Measure (SSIM), Learned
Perceptual Image Patch Similarity (LPIPS), and Relative
Average Spectral Error (RASE).

Furthermore, we compute the Kullback-Leibler (KL) di-
vergence to compare the probability distributions of pollu-
tion levels between the generated and actual light pollution
maps, before classifying them using the softmax function.
This comparison also extends to random and uniform distri-
butions. A lower KL divergence value here suggests a higher
resemblance in pollution levels between the two maps, em-
phasizing the semantic information of light pollution. The
evaluation results are detailed in Tables 2 and 3.

As depicted in Tables 2 and 3, our Causally Aware Gen-
erative Adversarial Network (CAGAN) exhibits outstand-
ing performance across both pixel-level and perceptual-level
metrics, affirming the practicality of the generated light
pollution images. Moreover, the generated light pollution
maps successfully capture the probability distribution of
light pollution levels. Notably, when compared to uniform
and random distributions, our model demonstrates a lower
Kullback-Leibler divergence, emphasizing its fidelity to the
probability distribution observed in real images.

Discussions
Causality Interpretability. The generated images exhibit
inherent causal interpretability, facilitating a deeper under-
standing of the outcomes from causal experiments. For in-
stance, deliberately adjusting the average nighttime light
intensity of various building types within residential areas



Indices City Residential Commercial Retail Brownfield Construction Industrial Grass Farmland Forest

Illumination

Paris 0.32∗∗∗ 0.00 0.01 -0.08 ∗ 0.17∗∗ -0.20∗∗∗ 1.41∗∗∗ -0.02 0.30∗∗

London 0.24∗∗∗ 0.27∗∗∗ 0.35∗∗∗ 0.00 0.29∗∗∗ 0.03∗∗∗ 0.14∗∗∗ 0.17∗∗∗ 0.23∗∗∗

Newyork 0.31∗∗∗ 0.14∗∗∗ -0.00 0.09∗∗ 0.15∗∗∗ 0.00 0.90∗∗∗ -0.14∗∗∗ 0.08∗∗

Shanghai 0.42∗∗∗ 0.27∗∗∗ 0.18∗∗∗ 0.08∗∗∗ 0.06∗∗∗ 0.16∗∗∗ 0.57∗∗∗ 0.00 0.29∗∗∗

Beijing 0.30∗∗∗ 0.20∗∗∗ 0.12∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.68∗∗∗ 0.02 0.02
Guangzhou 0.52∗∗∗ 0.42∗∗∗ 0.13∗∗∗ 0.22∗∗∗ 0.33∗∗∗ 0.14∗∗∗ 0.64∗∗∗ 0.05 0.18∗∗∗

Los Angeles 0.41∗∗∗ 0.14∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.05∗∗∗ 0.05∗∗∗ 0.91∗∗∗ -0.02 0.03∗∗∗

Trespass

Paris 0.19∗∗ -0.01 -0.02 -0.13∗∗ 0.19∗∗ 0.05 0.95∗∗∗ -0.01 0.33∗

London 0.31∗∗∗ 0.20∗∗∗ 0.29∗∗∗ -0.00 0.27∗∗∗ 0.02∗ 0.05∗∗∗ 0.17∗∗∗ 0.24∗∗∗

Newyork 0.21∗∗∗ 0.08∗∗∗ -0.05∗∗∗ 0.04 0.12∗∗∗ -0.01 0.63∗∗∗ -0.15∗∗∗ 0.02
Shanghai 0.38∗∗∗ 0.26∗∗∗ 0.14∗∗∗ 0.08∗∗∗ 0.04∗∗∗ 0.12∗∗∗ 0.43∗∗∗ 0.01∗∗ 0.24∗∗∗

Beijing 0.10∗∗∗ 0.06∗∗∗ 0.07∗∗∗ 0.07∗∗∗ 0.09∗∗∗ 0.09∗∗∗ 0.36∗∗∗ -0.00 0.01
Guangzhou 0.41∗∗∗ 0.26∗∗∗ 0.05∗∗∗ 0.21∗∗∗ 0.17∗∗∗ 0.11∗∗∗ 0.45∗∗∗ 0.03∗ 0.07∗∗∗

Los Angeles 0.02 0.33∗∗∗ 0.07∗∗ 0.18∗∗∗ -0.32∗∗∗ -0.14∗∗∗ -0.06∗∗∗ -0.00 0.03

Clutter

Paris 0.31∗∗ 0.11 0.13 -0.01 -0.02 0.24∗∗ 0.27∗ 0.10 0.08
London 0.29∗∗∗ -0.01 0.15∗∗∗ -0.01∗ -0.04∗∗∗ 0.01 0.06∗∗∗ -0.03∗∗ 0.04∗∗∗

Newyork 0.23∗∗∗ 0.19∗∗∗ 0.08 0.09∗ 0.11∗∗ -0.01 0.04∗ -0.02 -0.09∗∗∗

Shanghai 0.40∗∗∗ -0.00 -0.00 0.02 -0.04∗∗∗ 0.04∗∗ -0.09∗∗∗ 0.02 0.00
Beijing 0.11∗∗∗ -0.16∗∗∗ -0.01 0.05 0.05∗∗∗ 0.09∗∗∗ 0.17∗∗∗ 0.06∗∗∗ -0.05∗∗∗

Guangzhou 0.39∗∗∗ 0.10∗∗∗ -0.03∗∗ 0.05∗∗∗ -0.09∗∗∗ 0.04 -0.15∗∗∗ 0.06∗∗∗ 0.03
Los Angeles 0.00 0.08∗∗∗ 0.07∗∗∗ 0.05∗∗ -0.14∗∗∗ -0.06∗∗∗ -0.07∗∗∗ 0.10∗∗ 0.06∗∗∗

Table 1: The ATE of different types of buildings on Over illumination, Trespass and Clutter. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

Pixel Level Perceptual Level
IS ↑ PSNR ↑ MAE ↓ SSIM ↑ LPIPS ↓ RASE ↓

3.253 24.095 0.012 0.941 0.068 126.953

Table 2: Quality evaluation of CAGAN-generated Maps.

CAGAN Random Uniform
KL ↓ 7.2380 36.1757 28.2567

Table 3: KL Divergence Comparison

leads to observable changes in brightness across different
regions. By adjusting the NTL values for Residential, Com-
mercial, Construction, and Grassland categories and subse-
quently regenerating the light pollution maps, as illustrated
in Figure 8, our model showcases its capacity to assist local
administrators in making more informed decisions regarding
the allocation of nighttime lighting resources.

Output
(level 0)

Output
(rmNTL+5)

Output
(cmNTL+5)

Output
(imNTL+5)

Output
(gmNTL-5)

Ground
Truth

Figure 8: The residential areas after altering the Average
NTL (Nighttime Light Intensity) of different buildings.

Further Insights. Considering both the generated images
and causal outcomes in a holistic manner allows us to eluci-
date and dissect intricate light pollution phenomena. For ex-

ample, commercial centers often exhibit continuous night-
time illumination, encompassing buildings, billboards, and
lighting clutter. Additionally, in economically developed
metropolises, densely populated residential zones often ex-
perience mutual light trespass. Furthermore, alterations in
NTL values within grasslands yield broader effects. Urban
landscaping areas like grasslands require nighttime illumi-
nation for visual enhancement. This necessity might lead
to increased lighting installations around such spaces, thus
contributing to elevated light pollution. Additionally, grassy
areas commonly lack tall buildings and trees, rendering the
scattering and reflection of light in the surrounding environ-
ment more pronounced, thereby influencing a larger area.

Conclusion
In a nutshell, the proposed Causally Aware Generative Ad-
versarial Network (CAGAN) introduces a novel approach to
enhance interpretability and formulate management strate-
gies for mitigating light pollution in urban residential areas.
Through the exploration of causal relationships associated
with light pollution in our framework, we have gained a
deeper understanding of this phenomenon, paving the way
for the implementation of effective mitigation strategies. The
investigation has demonstrated the efficacy of CAGAN in
assessing residential light pollution across seven economi-
cally advanced metropolises. Looking forward, this method
holds the potential for broader applications, covering differ-
ent categories and levels of economic development.
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